What's the analog of the thm that $k i \tau$ deternine a geve care?
Do H,K detconine a swruce? Fu count? Cares

$$
3-2=1 \quad 3-1=2
$$

Difference canorical coords
RFeocucer canonical coords, ast what doternines a paracuctiod
lusteach, far the-sinplest aralog, and (som.
curves $\rightarrow k i \tau$, seed wooth
mas $T_{\text {repuran }}$ rel'n betwn $+k+k$?
ldea - get $\operatorname{lsom}\left(\mathbb{R}^{3}\right)$-inu'ls uaing a frove (c.5.M-C)
Rrove $F=\left[\psi_{1} \psi_{2} N\right]$
Q: conyou always choose ψ so F is orthonarmal?

A: prebaly not - not locally isonetric (uley?)
$F^{-1} d F$ natrix of 1-Rosus do ve recagnise ony?
Ruete $B_{j}^{i}=h_{j}^{i}$

$$
\text { Rehet: } \Gamma_{i}^{t}=T_{j}^{k}
$$

$$
d F=F\left[\begin{array}{ccc}
T_{1}^{\prime} & \Gamma_{2}^{\prime} & -B_{i}^{\prime} \\
T_{1}^{2} & T_{i}^{2} & -B_{i}^{2} \\
h_{i} & h_{2 i} & 0
\end{array}\right] \lambda x^{i}
$$

$$
\begin{aligned}
& { }^{{ }_{c} \mu_{i j}=T_{i j}^{k} \psi_{k}+h_{i j} N} \\
& \text { Cthisis the Du }
\end{aligned}
$$

Can you solue this for F ? Only if X_{1}, X_{2} commate on $\mathbb{B}^{2} \times G$
$F^{-1} d F=A \Rightarrow d A \sim A \sim A=0$ curde out
Conuere: F^{i} is as a function on G
vectr Beed
X. disued by

$$
D_{1} F_{j}^{i}=F_{k}^{i} A_{i j}^{k}
$$

$\otimes D_{1}=F_{k}^{i} A_{i}^{k} \frac{\partial}{\partial x^{2} j}+\frac{\partial}{\partial x^{i}} \quad A$ inst dipanct on X.

$$
\begin{aligned}
{\left[D_{2}, D_{2}\right] F_{j}^{i} } & =D_{1}\left(F_{k}^{i} A_{2}^{k}\right) \\
& =F_{k}^{i} A_{2 k}^{l} A_{1 j}^{k}+F_{k}^{i}
\end{aligned}
$$

Mivade 2
T detarnied by Rean metric a its Rirat darois

$$
\begin{aligned}
\left.\cdot \frac{1}{2}\left\langle\psi_{1}, \psi_{1}\right\rangle\right)= & \left\langle\psi_{1}, \psi_{1}\right\rangle \\
\cdot\left\langle\psi_{1}, \psi_{2}\right\rangle_{1}= & \left.\left\langle\psi_{1}, \psi_{2}\right\rangle+\left\langle\psi_{1}, \psi_{2}\right\rangle\right\rangle \\
& \frac{1}{2}\left\langle\psi_{1}, \psi_{1}\right\rangle_{2} \\
\cdot \frac{1}{2}\left\langle\psi_{1}, \psi_{1}\right\rangle_{2} & =\left\langle\psi_{12}, \psi_{1}\right\rangle \\
\cdot \frac{1}{2}\left\langle\psi_{2}, \psi_{2}\right\rangle_{1} & =\left\langle\psi_{12}, \psi_{2}\right\rangle
\end{aligned} \quad \text { vecover ton }
$$

Thus (Rounet) Suppone (E, F, G, e, F, g) given on $V \leqslant \mathbb{R}^{2}$, wisu $\left\{\begin{array}{c}E G-E^{2}>0 \\ G>0\end{array}\right\}$,
satiosying Gauss t Codazzi. Then $\forall q \in V$, \exists ublud u of q and $x: U \rightarrow \mathbb{R}^{3}$ s.t.
$X(u)$ has codrieients of I I I given leg (GFG, elg). Ang 2 esfber hy rigid motion.

Din A connetion in E is a muep

$$
\nabla: \operatorname{vec}(\mu) \times C^{\infty}(\theta) \longrightarrow C^{\infty}(\epsilon)
$$

that is
(i) lineor oner $C^{\infty}(\mu)$ in X
(ii) a derivation our $C^{\infty}(M)$ in e
i.e. R-innear in both oud
(i) $\nabla_{f x} e=f \nabla_{x} e$
(ii) $\nabla_{x} f e=(x f) e+f \nabla_{x} e$

Ruil As ve'vegen w/ v's, l, atc.
($D_{x} e$) ${ }_{e}$ degends only on X_{9}, e in a ubdud of p.
Difference w) Lie brecket - tenorial in x !
Now weill leuild up to ceeing why T desorhes a caurection.

Ex $O_{n} E=T \mathbb{R}^{n}$,

$$
\bar{\nabla}_{x} Y=X\left(Y^{j}\right) \frac{\partial}{\partial y^{j}}
$$

is the Euclideon connection (checte)
Ex Pull-bactr connection:

$$
\left(e^{\circ} \nabla\right)_{\times} f^{\alpha}\left(e_{a} \cdot \varphi\right)=x\left(f^{\alpha}\right)\left(e_{a} \circ u\right)+f^{\alpha}\left(\nabla_{\text {uex }} e_{a}\right) \circ e
$$

eg $\alpha: I \longrightarrow \mathbb{R}^{3}$ corve.

$$
\begin{aligned}
& \alpha^{\prime}=\frac{\partial \alpha}{\partial t}=\sum f^{i}(t) \frac{\partial}{\partial x^{i}} \text { action of }+T \mathbb{R}^{3} \\
& \left(\alpha^{*} T_{\partial}^{\partial t} \alpha^{\prime}=\left(\frac{\partial f^{i}}{\partial t}\right) \frac{\partial}{\partial \omega^{i}}+0=\alpha^{\prime \prime} .\right.
\end{aligned}
$$

(isondrin Recmonuion
Maine ex: $\left(f: S \rightarrow \mathbb{R}^{N}\right.$ is dinculbufid, and

$$
\pi: 亡^{*} \mathbb{D}^{N} \rightarrow T S
$$

is the orthogoual projection
then $\nabla_{x} Y:=\pi\left(i \bar{\nabla}_{x} Y\right)$
is a counection on $T S$
Mare geveradly, if $F \in(G,)^{\prime}$ is any sabb-boulle, π ony puy,

$$
\nabla_{x} f=\pi\left(\nabla_{x}^{E} f\right)
$$

T Rrove J
(avection cosfiriects (Chirstefel sgubds)
If E_{x} bucis Leo $E, \frac{2}{\partial x^{i}}$ a coard haisis for TM, then

$$
\Pi_{i} \epsilon_{\alpha} \nabla_{\frac{1}{2 \alpha^{2}}} \sigma_{\alpha}=\sigma_{\beta} \Gamma_{i \alpha}^{\beta}
$$

eg tate $\epsilon=T M, \epsilon_{\alpha}=E_{i}$
Waning - nod a teuser eg,

$$
\begin{aligned}
& \nabla_{i}\left(\sigma_{\alpha} g_{\beta}^{\alpha}\right)=\left(\nabla_{i} \sigma_{\alpha} \xi_{\beta}^{\alpha}+\epsilon_{\alpha} g_{\sigma}^{\alpha}\left(g^{-\gamma}\right)_{\gamma}^{\gamma} \nabla_{i} g^{\gamma} p\right. \\
& \nabla_{i} \tilde{\epsilon}_{\kappa}=\epsilon_{\gamma} \Gamma_{i}^{\gamma} \alpha g_{\beta}^{\alpha}+\tilde{\epsilon}_{\alpha} \\
& \tilde{\Gamma}=g^{-1} \Gamma_{g}+g^{-} \nabla_{g}
\end{aligned}
$$

Ture Coun on tencos boudles, tatal covariont lestruative Difference of conerections
Noct tive Mriracle 2 in genevality

