F'IF valor of 1-Dorus do un vecquise ony?
Nucle
$$B_{ij}^{i} = h_{ij}^{i}$$

 $Pulle B_{ij}^{i} = h_{ij}^{i}$
 $Pulle F. T_{ij}^{k} = T_{ij}^{k}$
 $Pulle F. T_{ij}^{k} = T_{$

$$F^{i}dF = A \Rightarrow \begin{bmatrix} A - A - A = 0 \end{bmatrix} \text{ work out}$$
Converse: F^{i}_{ij} as a function on G
vector Red
 X_{i} downlow D_{i} $F^{i}_{ij} = F^{i}_{ik}A^{k}_{ij}$
 A y_{int} depend on X.
 $D_{i} = F^{i}_{k}A^{k}_{ij} \xrightarrow{\partial} F^{i}_{ij} + \frac{\partial}{\partial X^{i}}$
 A y_{int} depend on X.
 $\left[D_{ij} D_{2} \right] F^{i}_{ij} = D_{i} \left(F^{i}_{ik} A^{k}_{ij} \right) = F^{i}_{k} A^{k}_{ij} + F^{i}_{k}$

Minade 2

$$T$$
 detoouned by Prear metric e its Forst doirs
 $\int_{z} (\psi_{1,1}\psi_{1,2})_{1} = (\psi_{1,1}\psi_{1,2})$ \longrightarrow become $\psi_{1,1}$ ton
 $\int_{z} (\psi_{1,1}\psi_{2,2})_{1} = (\psi_{1,1}\psi_{2,2}) + (\psi_{1,1}\psi_{2,2})$
 $\int_{z} (\psi_{1,1}\psi_{2,2})_{1} = (\psi_{1,1}\psi_{2,2}) + (\psi_{1,1}\psi_{2,2})$

•
$$\frac{1}{2} [\psi_{11}, \psi_{12}] = \langle \psi_{12}, \psi_{12} \rangle$$
 vecon ψ_{12} tou
• $\frac{1}{2} \langle \psi_{11}, \psi_{22} \rangle = \langle \psi_{12}, \psi_{22} \rangle$

Dru A connection in E is a map
Dru A connection in E is a map
Drud is
(i) lineor oner C°(HS in X Inclosed)
(ii) a derivation our C°(HS) in e
i.e. R-lineor in both oud
(i)
$$\nabla_{FX}e = f \nabla_{x}e$$

(ii) $\nabla_{FX}e = f \nabla_{x}e$
(ii) $\nabla_{FX}e = (XF)e + f \nabla_{X}e$
Rut As very seen w/ v5/5, l, otc.
 $(\nabla_{x}e)_{e}$ depends only on X_{e} , e in a ubdul of p .
Difference w/ he breaked - tenorical in X!

Now we'll loudd up to coercing whey T describes a concertion.

$$\begin{split} \underbrace{ \begin{array}{l} \zeta_{\mathcal{L}} & \mathcal{O}_{\mathcal{L}} \ \mathcal{E} = \mathsf{TR}^n, \\ & \overline{\bigtriangledown}_{\mathcal{L}} \ \mathcal{V} = X(\mathcal{Y}^i)_{\mathcal{J}_{\mathcal{Y}^i}}^2 \\ & \text{is the Euclideon connection (dectr)} \\ \\ \underbrace{ \begin{array}{l} \mathcal{E}_{\mathcal{L}} \\ \mathcal{E}_{\mathcal{L$$

(isouchin Recursulation)
Herrices:
$$(F_{1:}S \rightarrow T)^{\nu}$$
 is dysubwild, and
 $\pi: UD^{\nu} \rightarrow TS$
is the orthogrand projection
then $\nabla_{\chi}Y := \pi(U\nabla_{\chi}Y)$
is a connection on TS
More greendly, if $F \in (G, D)$ is any solo-boulde, π and $Puppin$
 $\nabla_{\chi}F = \pi(\nabla_{\chi}F)$.
 T
Hore

(durection coefficients (Christoffel Eyulsols) IF Ex basis for E, $\frac{2}{3}$, a coord basis for TM, then $\overline{D_i C_{xi}} \nabla_{\Phi} C_x = \overline{E_{\beta} T_i^{\beta}} \times$ ey take $E \cdot TM$, $C_x = \overline{E_i}$

Worning-ud atensor eg,

$$\overline{\nabla_i}(\overline{G_n}, \overline{g_p}) = (\overline{\nabla_i} \overline{G_n}, \overline{g_p} + \overline{G_n}, \overline{g_n}, \overline{\nabla_i}, \overline{g_p} + \overline{C_n}, \overline{g_n}, \overline{C_n}, \overline{g_n}, \overline{C_n}, \overline{g_n}, \overline{C_n}, \overline{G_n}, \overline$$

Under Cours on tensor boudles, total covoriont destructure Distance of coverections Newt thre Mirrade 2 in generality.